254 research outputs found

    Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection

    Full text link
    © 2017 In built infrastructure monitoring, an efficient path planning algorithm is essential for robotic inspection of large surfaces using computer vision. In this work, we first formulate the inspection path planning problem as an extended travelling salesman problem (TSP) in which both the coverage and obstacle avoidance were taken into account. An enhanced discrete particle swarm optimization (DPSO) algorithm is then proposed to solve the TSP, with performance improvement by using deterministic initialization, random mutation, and edge exchange. Finally, we take advantage of parallel computing to implement the DPSO in a GPU-based framework so that the computation time can be significantly reduced while keeping the hardware requirement unchanged. To show the effectiveness of the proposed algorithm, experimental results are included for datasets obtained from UAV inspection of an office building and a bridge

    Automatic interpretation of unordered point cloud data for UAV navigation in construction

    Full text link
    © 2016 IEEE. The objective of this work is to develop a data processing system that can automatically generate waypoints for navigation of an unmanned aerial vehicle (UAV) to inspect surfaces of structures like buildings and bridges. The input includes data recorded by two 2D laser scanners, orthogonally mounted on the UAV, and an inertial measurement unit (IMU). To achieve the goal, algorithms are developed to process the data collected. They are separated into three major groups: (i) the data registration and filtering to generate a 3D model of the structure and control the density of point clouds for data completeness enhancement; (ii) the surface and obstacle detection to assist the UAV in monitoring tasks; and (iii) the waypoint generation to set the flight path. Experiments on different data sets show that the developed system is able to reconstruct a 3D point cloud of the structure, extract its surfaces and objects, and generate waypoints for the UAV to accomplish inspection tasks

    Microwave-assisted noncatalytic esterification of fatty acid for biodiesel production: A kinetic study

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This study developed a microwave-mediated noncatalytic esterification of oleic acid for producing ethyl biodiesel. The microwave irradiation process outperformed conventional heating methods for the reaction. A highest reaction conversion, 97.62%, was achieved by performing esterification with microwave irradiation at a microwave power of 150 W, 2:1 ethanol:oleic acid molar ratio, reaction time of 6 h, and temperature of 473 K. A second-order reaction model (R2 of up to 0.997) was established to describe esterification. The reaction rate constants were promoted with increasing microwave power and temperature. A strong linear relation of microwave power to pre-exponential factors was also established, and microwave power greatly influenced the reaction due to nonthermal effects. This study suggested that microwave-assisted noncatalytic esterification is an efficient approach for biodiesel synthesis

    Population of isomers in decay of the giant dipole resonance

    Full text link
    The value of an isomeric ratio (IR) in N=81 isotones (137^{137}Ba, 139^{139}Ce, 141^{141}Nd and 143^{143}Sm) is studied by means of the (γ,n)\gamma, n) reaction. This quantity measures a probability to populate the isomeric state in respect to the ground state population. In (γ,n)\gamma, n) reactions, the giant dipole resonance (GDR) is excited and after its decay by a neutron emission, the nucleus has an excitation energy of a few MeV. The forthcoming γ\gamma decay by direct or cascade transitions deexcites the nucleus into an isomeric or ground state. It has been observed experimentally that the IR for 137^{137}Ba and 139 ^{139}Ce equals about 0.13 while in two heavier isotones it is even less than half the size. To explain this effect, the structure of the excited states in the energy region up to 6.5 MeV has been calculated within the Quasiparticle Phonon Model. Many states are found connected to the ground and isomeric states by E1E1, E2E2 and M1M1 transitions. The single-particle component of the wave function is responsible for the large values of the transitions. The calculated value of the isomeric ratio is in very good agreement with the experimental data for all isotones. A slightly different value of maximum energy with which the nuclei rest after neutron decay of the GDR is responsible for the reported effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig

    Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia

    Get PDF
    Abstract Background Base deficit (BD), anion gap (AG), and albumin corrected anion gap (ACAG) are used by clinicians to assess the presence or absence of hyperlactatemia (HL). We set out to determine if these tools can diagnose the presence of HL using cotemporaneous samples. Methods We conducted a chart review of ICU patients who had cotemporaneous arterial blood gas, serum chemistry, serum albumin (Alb) and lactate(Lac) levels measured from the same sample. We assessed the capacity of AG, BD, and ACAG to diagnose HL and severe hyperlactatemia (SHL). HL was defined as Lac > 2.5 mmol/L. SHL was defined as a Lac of > 4.0 mmol/L. Results From 143 patients we identified 497 series of lab values that met our study criteria. Mean age was 62.2 ± 15.7 years. Mean Lac was 2.11 ± 2.6 mmol/L, mean AG was 9.0 ± 5.1, mean ACAG was 14.1 ± 3.8, mean BD was 1.50 ± 5.4. The area under the curve for the ROC for BD, AG, and ACAG to diagnose HL were 0.79, 0.70, and 0.72, respectively. Conclusion AG and BD failed to reliably detect the presence of clinically significant hyperlactatemia. Under idealized conditions, ACAG has the capacity to rule out the presence of hyperlactatemia. Lac levels should be obtained routinely in all patients admitted to the ICU in whom the possibility of shock/hypoperfusion is being considered. If an AG assessment is required in the ICU, it must be corrected for albumin for there to be sufficient diagnostic utility.</p

    LESS is More: Code-Based Signatures without Syndromes

    Get PDF
    Devising efficient and secure signature schemes based on coding theory is still considered a challenge by the cryptographic community. In this paper, we construct a signature scheme by exploring a new approach to the area. To do this, we design a zero-knowledge identification scheme, which we then render static via standard means (e.g. Fiat-Shamir). We show that practical instances of our protocol have the potential to outperform the state of the art on code-based signatures, achieving small data sizes with a low computational complexity

    Many continuous variables should be analyzed using the relative scale: a case study of β2-agonists for preventing exercise-induced bronchoconstriction

    Get PDF
    BACKGROUND: The relative scale adjusts for baseline variability and therefore may lead to findings that can be generalized more widely. It is routinely used for the analysis of binary outcomes but only rarely for continuous outcomes. Our objective was to compare relative vs absolute scale pooled outcomes using data from a recently published Cochrane systematic review that reported only absolute effects of inhaled β2-agonists on exercise-induced decline in forced-expiratory volumes in 1 s (FEV1). METHODS: From the Cochrane review, we selected placebo-controlled cross-over studies that reported individual participant data (IPD). Reversal in FEV1 decline after exercise was modeled as a mean uniform percentage point (pp) change (absolute effect) or average percent change (relative effect) using either intercept-only or slope-only, respectively, linear mixed-effect models. We also calculated the pooled relative effect estimates using standard random-effects, inverse-variance-weighting meta-analysis using study-level mean effects. RESULTS: Fourteen studies with 187 participants were identified for the IPD analysis. On the absolute scale, β2-agonists decreased the exercise-induced FEV1 decline by 28 pp., and on the relative scale, they decreased the FEV1 decline by 90%. The fit of the statistical model was significantly better with the relative 90% estimate compared with the absolute 28 pp. estimate. Furthermore, the median residuals (5.8 vs. 10.8 pp) were substantially smaller in the relative effect model than in the absolute effect model. Using standard study-level meta-analysis of the same 14 studies, β2-agonists reduced exercise-induced FEV1 decline on the relative scale by a similar amount: 83% or 90%, depending on the method of calculating the relative effect. CONCLUSIONS: Compared with the absolute scale, the relative scale captures more effectively the variation in the effects of β2-agonists on exercise-induced FEV1-declines. The absolute scale has been used in the analysis of FEV1 changes and may have led to sub-optimal statistical analysis in some cases. The choice between the absolute and relative scale should be determined based on biological reasoning and empirical testing to identify the scale that leads to lower heterogeneity.Peer reviewe

    Which Lynch syndrome screening programs could be implemented in the "real world"? A systematic review of economic evaluations

    Get PDF
    Purpose: Lynch syndrome (LS) screening can significantly reduce cancer morbidity and mortality in mutation carriers. Our aim was to identify cost-effective LS screening programs that can be implemented in the "real world."Methods: We performed a systematic review of full economic evaluations of genetic screening for LS in different target populations; health outcomes were estimated in life-years gained or quality-adjusted life-years.Results: Overall, 20 studies were included in the systematic review. Based on the study populations, we identified six categories of LS screening program: colorectal cancer (CRC)-based, endometrial cancer-based, general population-based, LS family registry-based, cascade testing-based, and genetics clinic-based screening programs. We performed an in-depth analysis of CRC-based LS programs, classifying them into three additional subcategories: universal, age-targeted, and selective. In five studies, universal programs based on immunohistochemistry, either alone or in combination with the BRAF test, were cost-effective compared with no screening, while in two studies age-targeted programs with a cutoff of 70 years were cost-effective when compared with age-targeted programs with lower age thresholds. Conclusion: Universal or <70 years-age-targeted CRC-based LS screening programs are cost-effective and should be implemented in the "real world

    Anisotropy effects on the plasmonic response of nanoparticle dimers

    Get PDF
    We present an ab initio study of the anisotropy and atomic relaxation effects on the optical properties of nanoparticle dimers. Special emphasis is placed on the hybridization process of localized surface plasmons, plasmon-mediated photoinduced currents, and electric-field enhancement in the dimer junction. We show that there is a critical range of separations between the clusters (0.1–0.5 nm) in which the detailed atomic structure in the junction and the relative orientation of the nanoparticles have to be considered to obtain quantitative predictions for realistic nanoplasmonic devices. It is worth noting that this regime is characterized by the emergence of electron tunneling as a response to the driven electromagnetic field. The orientation of the particles not only modifies the attainable electric field enhancement but can lead to qualitative changes in the optical absorption spectrum of the system.We thankfully acknowledge financial support by the European Research Council (ERC-2010-AdG Proposal No. 267374 and ERC-2011-AdG Proposal No. 290891), the Spanish Government (Grants MAT2011-28581-C02-01, FIS2013-46159-C3-1-P, and MAT2014-53432-C5-5-R), and the Basque Country Government (Grupos Consolidados IT-578-13).Peer Reviewe

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme
    corecore